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1. Motivation 
Because I believe that the embedding vectors obtained from these sentences 
through a pretrained BERT model reflect a certain relationship between adjacent 
vectors in the embedding space. Moreover, there exists a transformation that maps 
these vectors into a two-dimensional space composed of Arousal and Valence, 
preserving their positional relationship. Conversely, this relationship also holds 
true in reverse (Figure 1). 
Therefore, I think this concept is similar to the encoder-decoder architecture. The 
encoder is responsible for transforming each sentence's embedding into a latent 
space composed of Arousal and Valence. Then, through the decoder, the latent 
space is converted back into the original embedding. 
In our dataset, we have calculated the mean and standard deviation for each 
sentence through manual annotations. Therefore, I think that this task is well-
suited for a VAE model because its concept involves the encoder predicting a set 
of mean and standard deviation values. By using these standard deviations along 
with values sampled from a normal distribution, we obtain the output of our final 
latent space. This allows for smoother results from the decoder. Additionally, we 
can use this architecture to enable the model to input sentence embeddings and 
output corresponding mean and standard deviation values. This approach ensures 
that adjacent points in the latent space, when decoded back to the original 
embedding by the decoder, maintain their original relationships. 
In this project, I hope to accomplish this sentiment analysis task using such a 
model architecture. 

 
Figure 1 

  



2. Related work  

A Variational Autoencoder (VAE) is a type of generative model that learns to 
encode data into a latent space and then decode it back to reconstruct the original 
input (Figure 2). The architecture of a VAE consists of two main components: the 
encoder and the decoder. 

1. Encoder: The encoder is a neural network that takes the input data and 
maps it to a latent space. Unlike a traditional autoencoder, a VAE's 
encoder outputs two vectors: the mean and the variance, which define a 
Gaussian distribution in the latent space. This distribution allows the 
VAE to sample points from the latent space during training. 

2. Latent Space: The latent space is a lower-dimensional representation of 
the input data. In a VAE, the latent space is characterized by a 
probabilistic distribution, typically a Gaussian distribution. This 
probabilistic approach allows for smoother interpolation and better 
generalization in generating new data (Figure 3). 

3. Decoder: The decoder is another neural network that takes points 
sampled from the latent space and maps them back to the original data 
space. The decoder aims to reconstruct the input data from the sampled 
points, ensuring that the generated data resembles the original input. 

 
Figure 2 : The architecture of a Variational Autoencoder (VAE), showing an 

encoder transforming an input image of a cat into a latent space, and a decoder 
reconstructing the image from the latent representation. 

 



 
Figure 3 : The advantage of VAEs in generating more diverse and continuous 

data samples by incorporating noise into the latent space. 

 

3. Method Overview 

Based on the architecture of a Variational Autoencoder (VAE), we have the 
encoder predict the mean and standard deviation of Valence and Arousal 
separately. Then, we sample a value for Valence and Arousal from a normal 
distribution, multiply each by their respective standard deviation, and finally add 
the mean to obtain the final latent space (Figure 4). 

Additionally, based on the original VAE loss, we use the mean and standard 
deviation of each sentence's Valence and Arousal from the dataset as our prior. 
Through the MSE loss between the mean and standard deviation predicted by the 
encoder and these priors to ensure that our embedding can produce the correct 
output (Figure 5).  

Through KL annealing, I dynamically adjust the weight of the KL divergence loss 
term in Variational Autoencoders, enabling smoother optimization and better 
control over the trade-off between reconstruction fidelity and latent space 
regularization." 



 
Figure 4 : The architecture of our model 

 

 
Figure 5 

 

4. Experiment  
In the data preprocessing stage, I saved the output of each sentence processed 
through pre-trained BERT as CSV files. This approach minimizes the time 
required for obtaining embeddings from BERT during the subsequent training 
phase. 
The implementation details of our model (Figure 6), which is designed based on 
the U-Net architecture. This model leverages the strengths of U-Net, particularly 
its encoder-decoder structure with skip connections, to effectively process and 
learn from our data. 
Figure 7 provides an overview of the hyperparameter settings employed during 
model training. Figure 8 presents the trend of the loss during the training of our 
model. Figure 9 showcases the validation results of our model following 5-fold 



cross-validation training. 

 

 
Figure 6 : The architecture of the U-Net variational autoencoder we designed. 

 

  
Figure 7 : Hyperparameter config 

 

  



 
Figure 8 : This plot shows how the loss changes during training. The x-axis 

represents the number of training iterations or epochs, while the y-axis indicates 
the loss value. 

 

 
Figure 9 : Validation results 

5. Conclusion 

In this implementation, I did not perform data cleaning, which could result in some 
sentences with larger standard deviations. When sampling each sentence's latent 
space in the VAE, those with larger standard deviations might overlap with the 
latent space of other sentences, causing the model to become confused and 
uncertain about the predictions. 

I did not use the Category information for each sentence from the dataset. I think 
incorporating this information for each sentence, similar to the CVAE architecture, 
by adding extra features based on these Categories (as shown in Figure 10), could 
potentially enhance the model's performance. 

The simple Gaussian assumption is too simplistic: Instead of assuming a simple 
Gaussian distribution for the latent variables, maybe we can explore the utilization 
of Gaussian Mixture Models, leveraging the mean and standard deviation derived 
from each sentence in the dataset, to model a more intricate distribution of the 
latent space. 



Unable to capture important features from the input data : Perhaps we can enhance 
the model's capability by incorporating an infoVAE, which introduces an 
additional term based on the mutual information between the latent variables and 
the input data. This approach encourages the model to learn latent representations 
that better retain information from the input data. 

In this implementation, we did not fine-tune BERT. Fine-tuning BERT typically 
requires significant computational resources and time. However, even without 
fine-tuning, we could still leverage BERT's ability to extract features from text. 
Moving forward, we might explore fine-tuning BERT as a means to further 
enhance our model's performance. This approach could potentially improve the 
model's adaptability to specific tasks and deepen its understanding of our data. 

 
Figure 10 : The improved version based on CVAE. 
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